
540 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 3. MARCH 1992

Improved Finite-Difference Formulation in Frequency
Domain for Three-Dimensional Scattering Problems

Klaus Beilenhoff, Member, IEEE, Wolfgang Heinrich, Member, IEEE,
and Hans L. Hartnagel, Senior Member, IEEE

Abstract—The finite-difference method in the frequency do-
main is a powerful tool for analyzing arbitrarily shaped trans-
mission-line discontinuities and junctions. In this paper, an im-
proved formulation based on Maxwell’s equations in integral
form is presented. It corresponds to the Helmholtz equation
and reduces the numerical efforts in solving the large linear
equation system considerably. The method is verified by com-
parison to previous work on microstrip.

I. INTRODUCTION

THE DESIGN of monolithic microwave integrated cir-
cuits (MMIC) requires reliable modeling tools [1].

Because it is impossible to tune circuit performance after
fabrication, a very precise a priori knowledge of passive
and active elements is mandatory if time consuming and
costly redesign cycles are to be avoided.

High-frequency devices (e.g., transmission-line con-
nections, couplers, filters) are usually described in terms
of their scattering matrix. Several methods are known for
determining the scattering behaviour of passive structures
using a field-theoretical approach. The mode-matching
method [2] e.g., gives very accurate results but it can only
be applied to certain geometries. The spectral domain
method, on the other hand, leads to very efficient algo-
rithms (e.g., [3]). The main disadvantages of this method
are, however, that only planar structures can be analyzed
and that metallization thicknesses larger than zero cause
problems. During the last five years, the time domain
methods became more and more important, especially the
finite-difference method (FDTD) [4]. Its principal advan-
tage is that only one step is required for the calculation of
a broad range of frequencies. On the other hand, the
S-parameters represent basically frequency-domain quan-
tities. This inconsistency causes, for instance, that one
can allow for only one propagating mode on each longi-
tudinally homogeneous transmission line attached to the
discontinuity under investigation. Hence, mode conver-
sion cannot be considered.

In this paper the finite-difference method in the fre-
quency domain is employed. There are several advan-
tages in using this method. First, it allows one to simulate
the electric and magnetic field of nearly arbitrarily shaped
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structures. The materials may have a frequency dependent
complex permittivity and permeability. Further, this
method has been employed successfully in connection
with cavity resonator problems [5]. One additional reason
for using the frequency domain is the compatibility with
the mode concept and thus the straightforward derivation
of the scattering matrix.

In the following, a short description of the finite-ditTer-
ence method in the frequency domain is given and the
improved formulation is introduced. To show the reduc-
tion in numerical efforts, the computational time of the
program for the new formulation is compared with the
standard version. Finally, a check against other methods
shows the accuracy of our approach.

II. THE FD-METHOD IN THE FREQUENCY DOMAIN

Generally speaking, a boundary value problem is
treated here. In its simplest case, the bounded region is a
rectangular box. It encloses the line discontinuity and the
attached longitudinally homogeneous transmission lines
representing the ports. This large box is subdivided into
elementary cells by a three-dimensional nonequidistant
Cartesian grid. The electric field components are defined
at the central points of the corresponding cell edges (see
Fig. 1). Therefore, this mesh is called the electric field
mesh. Each cell is filled with an isotropic medium de-
scribed by its permittivity and permeability. Hence, a
change in material properties can only be located at the
surfaces of elementary cells. In our case, only lossless
materials are taken into consideration. Therefore, we as-
sume e, and p, to be real. The magnetic field components
are positioned at the central point of each cell surface with
a direction perpendicular to that surface. Thus, a second
mesh is created which is called the dual grid or the mag-
netic field mesh. Fig. 1 shows both meshes for a single
elementary cell.

The Maxwell equations in integral form for lossless and
isotropic materials are given by (1) and (2). Since we are
considering the frequency domain, a harmogic time de-
pendence (e ‘o’) is assumed, which is not printed in the
following:

(1)
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Fig. 1. Field quantities related to an elementary cell.

(2)

The discretization of the analytical equations can be done
by the following transformation:

(3)

(4)

For each cell the line integral of a tangential vector can
be approximated by multiplying the value at the central
point of the corresponding boundlary with the line length.
In the same way, the surface integral is represented by the
multiplication of the value in the center of the surface with
the surface area (see Appendix I). One derives a discre-
tized form of Maxwell equations that can be written in
matrix notation (see Weiland [6]):

Z and b are the vectors containing the electric and mag-
netic fields of the cells, respectively. The boldfaced typed
operators denote matrices. A is defined as the operator of
the corresponding line integral (see Appendix H). Each
coefficient of A is unity or zero, corresponding to the use

of the field component for the Maxwell equation of node

m. Therefore, A is a canonical matrix and does not in-
volve any information on dimensions or materials of the
structure. For field components pllaced tangential to or in-
side a metallization, all elements in the comesponding
matrix line and row are equal to zero. The abbreviation
D refers to diagonal matrices. The index indicates which
quantities form the elements of the main diagonal. These
matrices contain the information on dimension and ma-
terial for the specified structure and mesh (see Appendix
II). Equations (5) and (6) can be combined to (7) by sub-
stituting the magnetic field components:

This formulati~n corresponds to the analytical expression
of V X V X E = k~E. It describes the electromagnetic

field inside the enclosure containing the structure under
consideration. If no sources exist on the boundaries of the
enclosure, (7) represents an eigenvalue problem with the
eigenvalues kore~being resonant frequencies of the cavity.
Because we are interested in the scattering matrix, how-
ever, waves propagate through the ports and thus we have
to assume suitable sources on the boundaries. Hence, the
homogeneous system of linear equations (7) turns into an
inhomogeneous one (8):

(ArD~/pD~lAD~ – k;D~6) Z = 7, (8)

The right-hand side P represents the sources which are
defined as the sum over all transversal electric fields of
the modes propagating on the transmission lines at the
ports. The matrix DJ( contains only elements larger than
zero. Hence, multiplying D;e’ from the left-hand side does
not change the. solution and one has

(D~,lA ‘D,/wD~lAD$ – k~Z) Z = D~617 or

(M–k;I)Z= 7’ (9)

with Z being the matrix of unity.
The dimension of the system of linear equations for the

electric field Z is very large. Its matrix consists only of a
few diagonals with nonzero elements but does not exhibit
special properties. It is not symmetric and, what is even
more important, it is not positive definite. Thus, conver-
gence of iterative solution methods is very poor, as shown
in Section IV-A. In the next section, therefore, a modified
formulation is presented which can extremely improve
convergence properties and, consequently, reduce com-
putational time.

HI. INTRODUCTION OF THE E-FIELD DIVERGENCE

The convergence behavior when solving (9) numeri-
cally depends on the properties of the system matrix (M
– k~Z). Very important are the following conditions: The
matrix should be positive definite and should have a sym-
metric structure (MT = M). Then, only real eigenvalues
occur and each of them is larger than zero, In this case,
the matrix woidd be ideally suited for numerical solvers.
Regarding (9), however, it seems to be impossible to proof
generally whether the matrix is positive definite or not.
One gets further insight, however, when analyzing the in-
ternal structure of the system matrix (M – k~l) and re-
lating it to the physical problem (see Weiland [6]).

What one needs to know are the eigenvalues of this ma-
trix, because they determine its numerical condition. The
term –k~Z causes only a shift and thus the problem is to

derive the eigenvalues Xi of M. The characteristic equa-
tion reads

det (M – Xii) = O. (lo)

Comparing this expression to the original problem stated
by (9) one finds that the Xl refer to the resonances of the
equivalent cavity. If one treats the case without any
sources on the enclosure (i. e., P = O in (9)), each eigen-
value & in (10) corresponds to a resonance frequency with
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kor.~= 27r&,,6 in (9). In conclusion, the eigenvalues
of the system matrix and thus its numerical condition cor-
relate to the cavity resonances of the enclosure. Particu-
larly, if there exists a resonance for~O,., = O Hz, the sys-
tem matrix possesses an eigenvalue at zero and hence
cannot be positive definite-a case that should be avoided.
Our investigations show that it has a severe impact on the
numerical procedure and, therefore, further considera-
tions on the solution for w = O are necessary.

From the physical point of view, the situation is clear:
When the metallic boundaries and the metallic regions in-
side the box are simply connected, resonant fields of fre-
quency ~o,., = O Hz can only be generated by an electric
space charge p in the dielectric areas. p (x, y, z) can be
arbitrarily distributed be$ause a priori we did not assume
any condition on V “ eE = p. The space charge excites
an irrotational static field, which is a solution of (9) and
(10) and inevitably generates eigenvalues at zero. More
detailed, for all n nodes containing only dielectric mate-
rial an arbitrary charge value is possible. Therefore, at a
frequency of zero n independent solutions are possible for
resonant fields. Hence a n-times degenerated eigenvalue
for the corresponding resonator problem must be ex-
pected.

Since we are focusing on time-dependent solutions,
static fields including those excited by a static space
charge do not influence our solution on principle. As
shown above, however, they change the matrix involved
in the numerical procedure causing additional eigenvalues
at zero, which drastically deteriorate convergence char-
acteristics.

The basic idea, developed already by Weiland for res-
onator problems [5], is to force the static space charges
to zero by imposing the condition of zero space charge
(11) on (9) and (8):

V“ez=p=o&
+

ei?d~=O (11)
A

Then, assuming simply connected metallic regions inside
the box, all resonances at o = O and the corresponding
eigenvalues of the system matrix vanish. Condition (11),
of course, should only be used for dielectric regions, since
charges may exist on metallic walls and inlays.

Equation (11) can be transformed into a finite-differ-
ence formulation for node m of the mesh as explained in
Appendix I. In matrix form it reads

BDA62 = 6. (12)

The matrix B represents here, similar to matrix A, the
integral over a closed surface without considering mesh

dimensions or material parameters (see Appendix II).

These information are included in the diagonal matrix

DA,.
One can rewrite (12) without loosing generality in the

following way:

(D,-l DA,BTD;~BDAe) Z = ii (13)

This equation is equivalent to the operator:

V(v “ a?)= 6. (14)

One can now incorporate (13) into the basic formulation

of (8):

The factor @is similar to a penalty factor, which does not
influence the true solution but can be used to optimize
speed of convergence. For all structures investigated @is
found to be equal to unity. Therefore, it is omitted in the
following equations.

Employing (15) instead of (8) or (9), one can be sure
now that for simply connected metallic boundaries and
inlays the lowest resonance frequency of the whole struc-
ture is not equal to zero.

Also, after some mathematical manipulations the sys-
tem matrix of (15) can be transformed into a symmetric
one:

(D:12A ‘DJ/p D;i AD:/2 – k; DA,

(16)

This linear system of equations can be solved numerically
much faster than the original formulation of (8) (see Sec-
tion IV-A). It is interesting to note that this improvement
depends not only on the divergence condition (11) itself.
Rather we found that~t must be implemented in (9) by the
formulation V (V o ~E) according to (13). Obviously, the
new formulation presented in (16) and (15) corresponds
to the derivation of the Helmh~ltz wave equation where
also the condition V (V o eE ) is required to obtain
V 2~ + kz ~ from the original Maxwell operator
VxVxi–k2~.

IV. RESULTS

A. The Numerical Advantage of the New Formulation

Our software package is based on the work by Christ
[7], who, however, did not include the above mentioned
divergence formulation. It runs on a IBM3090-200VF
mainframe computer. For the solution of the larger linear
equation system. the mathematical library LINSOL [8] is
used. This library contains several iterative solution
methods, of which the biconjugate-gradient method
(BICO) is selected to solve the large linear equation sys-
tem.

To demonstrate the advantage of the new formulation,
Table I presents some data on the numerical efforts using
the new formulation and the standard version without the
divergence condition, respectively.

The first structure (MS-DIS) is a microstrip disconti-
nuity where the width of the strip changes. The mesh is
nearly equidistant and very coarse, with a relatively small
number of nodes, namely 1600. Therefore, the advantage
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TABLE I
COMP~RISON OF THE NEW FINITE-DIFFERENCE FORMULATION CONSIDERING

V . eE = O WITH THE STANDARD VERSION, IN TERMS OF MATRIX-VECTOR

MULTIPLICATIONS (no. MVM) AND CPU TIME IN SECONDS

Computational IEfforts

Structure No. MVM CPU Time No. MViV[ CPU time

Standard Version With ‘V . & = O

MS-DIS 1996 11 264 2
AB-A-L1O-11 58204 4756 1416 118

of the new formulation is considerable (a fa~ctor of 6 in
CPU time) but not as extreme as for the second case. The
latter structure, an air-bridge fc)r coplanar MMIC ‘s, re-
quires a strongly nonequidistant mesh (ratio between the
cell dimensions up to 27) consisting of 66301nodes and,
correspondingly, shows a very poor convergence for the
standard version. For this geometry, the reduction in CPU
time reaches a factor of 40.

This improvement is a very essential one regarding ap-
plication of the FD method to the typical three-dimen-
sional problems encountered in the analysis of MMIC ele-
ments. Coplanar discontinuities, for instance, require a
strongly non-equidistant mesh due to their inhomoge-
neous field distribution. The mesh has to be very fine in
the slot area and successively coarse towards the shield-
ing. For su$h problems, the formulation without consid-
ering V “ eE = O leads to an extremely poor convergence
or even divergence of the equation solver. Thus the im-
proved formulation presented here actually opens new
fields of application,

B. Comparison with Other Methods

In order to show the stability and accuracy of our finite-

difference formulation, the scattering parameters (more

precisely, Is,, I and 021 = arg (~21 )) of a micmstrip mean-

der transmission-line are plottecl in Figs. 2 and 3. The

results obtained by measurements (solid line) [9] and by

two other field simulation techniques are shown as well.

One of them uses the spectral domain approach (SDA)

(dashed line) [10] while the other data (dotted line) refer

to a finite-difference formulation in time domain (FDTD)

[4] .

Generally, the agreement between measurements and

predicted results is good. For high frequencies (~ > 22
GHz), a box resonance must be taken into account, which

causes the difference between our results (bullet) and the

other field simulation techniques, lt should be pointed out,

that one finds a particular good agreement between the

two finite-difference formulations. The shift of I~1 I I in

the frequency range from 14 GHz up to 22 GFIz is caused

by radiation losses that are included in the time domain

case due to the open boundary condition. As allready men-

tioned in [4], for a finite-difference formulation in time

domain a frequency shift of the scattering pammeters can

be observed. Presumably, this error is caused by an in-
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Fig. 2. IS’,, I of a microstrip meander transmission-line.
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Fig. 3. arg (Sj, ) = C&l of a microstrip meander transmission-line.

accurate description of the metallization dimensions due
to the discretized formulation [1 1]. The FDTD seems to
enlarge the metallization by a small extent, i.e., the re-
sults correspond to a structure with metallic inlays, which
are slightly larger than the actual ones. It can be seen from
our investigations, that this error also occur in the fre-
quency-domain formulation. A reduction of the error is
possible using a finer mesh, which, however, increases
the dimension of the system matrix.

In Fig. 4, the effective length lefiof an open microstrip
end is shown in comparison to previous work [12]-[ 14]
using spectral domain techniques. The frequency depen-
dence agrees very favorably. The effective length, on the
other hand, is always about 8 % higher than the results
obtained by the other methods. This again corresponds to
the case of a slightly larger metallization.

The deviations between the references and the lack of
accurate measurements, however, make a detailed quan-
titative comparison impossible.

V. CONCLUSION

The finite-difference method in the frequency domain
proved to be a powerful technique for the full-wave anal-
ysis of 3-dimensional structures of arbitrary geometry.
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Fig. 4. Effective length l,f of an open microstrip end (27 = 0.635 mm,

G, = 9.6 W/H = 1.57).

Explicitly incorporating the E-field divergence, a better
numerical convergence behaviour in solving the larges ys-
tem of equations can be achieved. CPU time reductions
up to a factor >40 were observed. This enables one to
investigate also structures with highly complex geome-
tries, which otherwise could not be analyzed because con-
vergence of the iterative system solver would fail.

Checking the method against previous work on micro-
strip discontinuities generally good agreement was found.
A small systematic error regarding the dimensions of me-
tallic inlays is observed. It appears to be inherent to all
finite-difference formulations and results in a slight shift
of the scattering parameters towards lower frequencies.

APPENDIX I

This section describes the transformation of the two
Maxwell-equations into a finite-difference formulation in
the frequency domain. Regarding the dimensions of each
cell and the filling material the following index notation
is used. The node corresponding to cell m is that of the
left lower front corner. The neighboring cells are denoted
by their location regarding to m ((l)eft, (r)ight, (d)own,
(u)p, in (f)ront of, (b)ehind). Then (17)-(19) represent
the first Maxwell equation (see (1)), while (20)-(22) orig-
inate from the second Maxwell equation (see (2)):

(17)

Xdz.d-) E
‘4edym

(18)

(19)

ZrEz, – Yb Eyb – z~E,~ + y~ Ey~= ‘.kY~ z,.L (20)

xbExb — 2. E,. — Xm EX~ + Z.Em = –jwz.x. By. (21)

yUEVU– xrEXr – y. Eym + X. E..m = –jtixm, y,,,Bz~. (22)

The additional constraint of the field V . 6,2 = O can be
transformed into the finite-difference scheme in the fol-
lowing way. Again, the equation refers to grid node m:

( )—em +~q+y+~,+:q Em
+ y. 2.

4

-(

ydzd zd[yd[ ydlfzdlf Zdfydf
‘cd+

4
‘~d~+—

4 4
~d~+

)
— ~df EX~

4

(

ZmXm .zdfxdf
6,,1 + ‘; Ef + —

Xd .zd
+—

4 4
~df + —

4 )
cd EY,.

(

Zlx[ Wlf zdfxd/f xd[zd[— —q+-
4 4

qf + — e~/f+
4 )

— cd, EY,
4

(

‘niYm Ydxd Xd[yd[
+ —Em+—

y,xl

4 4
~d +

)
— ~d[ + — e! E,.

4 4

(xfYf ydfxdf ‘dlfydlf Ylf4f— —Cf+ “df+~ ~d/f + —
)

ey Ed = 0.
4 4 4

(23)

APPENDIX II

This section provides information on the morphological

structure of the matrices which are used in the description

above.

The electric field vector and the magnetic field vector

are built up according to (24) and (25):

Z=(”””, EZ~, Ey~, EXn, ”” “) (24)

;= (””” , ‘3., BYm,‘,,~, “ ““). (25)
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The total number of cells is m~e, = n, o nY o n, with nu Finally, the diagonal matrices D containing the infor-
corresponding to the number of mesh lines in direction v. mation on all dimensions and materials are presented. AN

The matrix A representing the operator for the integral cell dimensions are described by their direction with re-
along a closed line is shown in (26). This matrix consists gard to the coordinate system (see Fig. 1) and by an in-
only of the elements – 1, 0 and 1. If one electric com- dex, which refers to the cell number. This index also
ponent is equal to zero because of its position on a me- characterizes permeability and permittivity of each ele-
tallic boundary or inlay, the whole column becomes zero. mentary cell:
Hence there holds det (A) = O. The indices u, r, b refer

to the position of the corresponding cell related to cell WI
D,= Diag(. .”, z~, y~, x~, ”””) (28)

(see Appendix I):

. . . zrn ym xm zu yu “~. zryrxr ““” zb yb xb ““”

A=

0-1101 ”’” 00-1 ““”000

1 0 –1 –10””’000”””00 1

–llOOO””” 100 ““”o–lo

o

0

0

0

0

0

0

0

1
(26)

Matrix B describes a volume integral. This integral can DA = Diag (“ “ o , x~y~, x~z~, y~z~, o “ o) (29)
be obtained for every grid node except those who are part
of a metallic boundary or inlay. H~nce for the whole
structure only m~e, equations of V - eE = O are possible.

D$p=Diag(,~(~+fi),~(~+~)

In order to obtain a more homogeneous structure of the
matrix, the same equation is considered three times, for

it+;)-)
(30)

the EX~, EY~ and EZ~ components:

... Zf .“. Yl ... Xd zmYmxm ...

‘=r~~~.!!

(27)
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: ( YrnGriCM+ 4Yl~/ + Y/fztf~/f+ zfYfq), “ “ “)
(31)

Dv,, = Diag (- “ “ , dv,,~, dvc,~, dv,,~, . “ . )
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